Дирихле интеграл - definition. What is Дирихле интеграл
Diclib.com
قاموس ChatGPT
أدخل كلمة أو عبارة بأي لغة 👆
اللغة:

ترجمة وتحليل الكلمات عن طريق الذكاء الاصطناعي ChatGPT

في هذه الصفحة يمكنك الحصول على تحليل مفصل لكلمة أو عبارة باستخدام أفضل تقنيات الذكاء الاصطناعي المتوفرة اليوم:

  • كيف يتم استخدام الكلمة في اللغة
  • تردد الكلمة
  • ما إذا كانت الكلمة تستخدم في كثير من الأحيان في اللغة المنطوقة أو المكتوبة
  • خيارات الترجمة إلى الروسية أو الإسبانية، على التوالي
  • أمثلة على استخدام الكلمة (عدة عبارات مع الترجمة)
  • أصل الكلمة

%ما هو (من)٪ 1 - تعريف

Дирихле задача; Проблема Дирихле
  • Решение задачи Дирихле на кольце с краевыми условиями: <math>u(2,\varphi)=0</math>, <math>u(4,\varphi)=4 \sin (5\varphi)</math>

Дирихле интеграл      
(по имени П. Г. Л. Дирихле)

название интегралов нескольких типов.

1) Интеграл

Этот Д. и. называется также разрывным множителем Дирихле и равен π/2 при β < α, π/4 при β = α и 0 при β > α. Таким образом, Д. и. (1) является разрывной функцией от параметров α и β. Дирихле использовал интеграл (1) в своих исследованиях о притяжении эллипсоидов. Впрочем, этот интеграл встречается ранее у Ж. Фурье, С. Пуассона и А. Лежандра.

2) Интеграл

где

есть так называемое ядро Дирихле. Этот Д. и. равен n-й частичной сумме

ряда Фурье функции f (х). Формула (2) является одной из важнейших формул теории рядов Фурье, в частности, позволившей Дирихле установить, что ряд Фурье функции, имеющей конечное число максимумов и минимумов, сходится в каждой точке.

3) Интеграл

Подробнее см. Дирихле принцип (в теории гармонических функций).

Задача Дирихле         
Задача Дирихле — вид задач, появляющийся при решении дифференциальных уравнений в частных производных второго порядка. Названа в честь Петера Густава Дирихле.
Дирихле задача         
(по имени П. Г. Л. Дирихле)

задача об отыскании гармонической функции (См. Гармонические функции) по её значениям, заданным на границе рассматриваемой области.

ويكيبيديا

Задача Дирихле

Задача Дирихле — вид задач, появляющийся при решении дифференциальных уравнений в частных производных второго порядка. Названа в честь Петера Густава Дирихле.